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• The recent first detection of gravitational 
waves (GW) in the fabric of spacetime 
from black hole binaries, has opened up 
a new way to study our Universe and 
new avenues to study cosmology. 

• One very exciting, but challenging 
prospect, is the measurement of 
primordial gravitational waves  
(PGW) produced in the very early 
universe during cosmological 
inflation

[LIGO collaboration, ’15]

(t ⇠ 10�34sec)

GRAVITATIONAL WAVE COSMOLOGY



PRIMORDIAL GRAVITATIONAL WAVES

• PGWs are a generic prediction of cosmological 
inflation. Amplitude is model dependent

• Cosmic Microwave Background (CMB) polarisation 
experiments can probe their amplitude at very large 
CMB scales.

• Smaller scales not constrained by CMB 



• PBHs can provide a significant fraction – or all – of 
the mysterious Dark Matter has become a serious 
possibility.

• Large primordial fluctuations may collapse to form 
primordial black holes (PBHs).

PRIMORDIAL BLACK HOLES

[See e.g. Carr, Kuhnel, '20; Green, Kavanagh, '20]

[García-Bellido, Linde, Wands, ’96]

• The amplitude of inflationary perturbations at the 
scales probed by the CMB is constrained by 
observations to be       

As ⇠ 10�9 @ k = 0.05Mpc�1

• For inflationary perturbations to produce a significant 
PBH population, it needs a mechanism to enhance 
them to                  at smaller scales.As ⇠ 10�2

[Garcia-Bellido, Ruiz-Morales; Ezquiaga, Garcia-Bellido, Ruiz-Morales; Ballesteros, 
Taoso; Hertzberg,Yamada; Kannike, L. Marzola, M. Raidal and H. Veermäe, ‘17]

(see Anguelova,  Cicolli, Lüst, Mavromato’s talks)

[Zeldovich, Novikov, '66] 
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Primordial Black Holes from the Early UniverseGWs induced by primordial fluctuations, and PBHs, 
are a direct window to the latest stages of inflation.

Universe 2021, 7, 398 2 of 80
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Figure 1. On the left we show the power-law integrated sensitivity curves [28] in terms of the GW
spectral density for some GW detectors. In the lower and upper horizontal axis, we respectively
show the GW frequency and the associated temperature of the universe at the time of GW generation,
assuming radiation domination. On the right, we show the typical quantities associated to the
cosmological horizon at a particular time, given in terms of 10-folds from matter-radiation equality.
We also show the ranges covered by CMB anisotropies and µ spectral distortions, BBN constraints and
GWs. If PBH form, they can be probed by induced GWs (iGW), emission of g rays and microlensing.

Typical sources of cosmological GWs in the very early universe include (for more
details see [29]): phase transitions, which may lead to collisions of bubbles or a universe
filled with cosmic strings, resonances during reheating, quantum (gravity) fluctuations
during inflation (so-called primordial GWs) and GWs induced from large primordial
fluctuations. Such large primordial fluctuations may also collapse to form primordial black
holes (PBHs). Out of these cosmological sources, GWs induced by primordial fluctuations,
and to some extend PBHs, are our direct window to the latest stages of inflation. The
information we could gain about inflation by the so-called induced GWs potentially covers
scales around k ⇠ 107–1018 Mpc�1, otherwise inaccessible by any other probe. Even
the absence of induced GWs will place new constraints on the primordial spectrum in
unexplored regimes, potentially down to PR ⇠ 10�4–10�5 [30]. On top of these very
promising prospects, induced GWs are generated when primordial fluctuations re-enter
the horizon sometime between the end of inflation and BBN. Since we have no evidence
of the content and expansion history of the universe around that time, induced GWs not
only provide access to the last stages of inflation but they also contain information on the
content of the primordial universe. In this review, we will be opening to the possibility that
the universe much before BBN was not dominated by radiation. In the future, information
on the primordial spectrum obtained by induced GWs will complement those from other
probes such as spectral distortions [31,32] in the multimessenger cosmology era [33].

1.1. Induced GWs History
The possibility of having GWs induced by density fluctuations was first noticed, as

far as the author is aware, by K. Tomita in 1967 [34]. They were later rediscovered in the
1990s by Matarrese, Pantano and Saez [35,36] when studying second order cosmological
perturbations in a dust dominated universe. Quite interestingly, in 1997 Matarrese, Moller-
ach and Bruni [37] noticed that induced GWs in a dust dominated universe suffer from
gauge ambiguities. They proceeded to argue that only the oscillating part of the induced
tensor modes were identified as true gravitational waves. We will discuss more about the
gauge ambiguities in Section 7. However, Refs. [35–37] concluded that induced GWs were
too small to be practically observed.

It was not until 20 years later that Ananda, Clarkson, and Wands [38] started to
uncover the potential of induced GWs. In Ref. [38] they proposed to use induced GWs,
generated in a radiation dominated universe, to constrain the spectral tilt of primordial
fluctuations. A blue tilted primordial spectrum even with the CMB normalization might
end up yielding large enough induced GWs. Some months later, Baumann, Steinhardt,

PR > 10�2

PR > 10�4

[Thrane, Romano, ’13; Domenech, ‘21]

At first order scalar and tensor fluctuations are 
decoupled. At second order, GWs are induced from 
first-order scalar perturbations. If large, potentially 
detectable at interferometers [review: Domenech, ‘21]

PRIMORDIAL BLACK HOLES AND IGWS

[Tomita, ‘67]

(Anguelova,  Cicolli, Lüst, Muia, Mavromato’s talks)



PLAN

Amplification of the curvature perturbations:  

Beyond single field: 

Summary 

• large turn attractor 
• sharp turns, PBHs and IGWs

• single field inflation, PBHs and IGWs



a generalization of the argument presented in Section 2. Our analysis here will be only

qualitative – we do not numerically compute the power spectrum in this case – but serves

as starting point for further quantitative studies of black hole production in scalar-tensor

theories of single field inflation with non-standard kinetic terms.

4.1 Background and perturbations with non-canonical kinetic terms

We start by writing the homogeneous equations of motion associated with the general

Lagrangian with non-canonical kinetic terms, eq (4.1), minimally coupled with Einstein

gravity:

H2 =
8⇡G

3
⇢, (4.2)

Ḣ = �4⇡G(⇢+ P ), (4.3)

⇢̇ = �3H(⇢+ P ) . (4.4)

The energy density is

⇢ = 2XP,X � P , (4.5)

while the function P in eq (4.1) plays the role of pressure. The dot indicates derivatives

along physical time t. This system is characterized by a sound speed20 cs defined by

c2s =
PX

⇢X
=

PX

PX + 2XPXX

. (4.6)

Following the formalism developed by Garriga and Mukhanov [90], the equation for the

curvature perturbation R generalises eq. (2.2) and reads in this case

R00
k + 2

z0

z
R0

k + c2s k
2Rk = 0, (4.7)

where now
z0

z
= aH (1 + ✏� � � s) , (4.8)

with the prime corresponding to derivatives along conformal time ⌧ . The slow-roll param-

eters are defined as

✏ = � Ḣ

H2
, � = � Ḧ

2HḢ
, s =

ċs
Hcs

. (4.9)

At this point, we can generalise the arguments we introduced in Section 2, where we

have seen that the spectrum of curvature fluctuations can be enhanced at small scales

20The implications of a smaller than unity speed of sound for the cosmological observables (ns, r,↵s)
in a model independent large-N approach was studied in [86], while frameworks to study large deviations
from a slow-roll regime in similar contexts were developed in [87–89].
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ENHANCEMENT OF THE CURVATURE PERTURBATION 

Consider the mode equation of curvature perturbation:
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At leading order in slow-roll, the amplitude of the scalar power spectrum in single field
inflation with canonical kinetic terms reads

�2
s =

1

4⇡2

H4

|�̇|2
����
k=aH

, (2.1)

where H is the Hubble parameter, and �̇ denotes the time derivative of the inflaton. De-
viations from a slow-roll regime can change this expression, but at first sight it seems hard
to increase its value by several orders of magnitude within a well-defined range of scales,
without spoiling inflation. On the other hand, various recent works have succeeded in doing
so [7], by using inflationary potentials with inflection points. In the inflection point regions
of the potential the inflaton dynamics experiences a rapid speed decrease, and enters into a
so-called ultra slow-roll regime during which the amplitude of �2

s can indeed be enhanced by
several orders of magnitude.

A heuristic, physically transparent explanation for this phenomenon can be found in
works by Leach and Liddle [13] and Leach et al. [14]. We review their argument here, using
it as guideline for the discussion we develop in the remaining sections.

The mode equation for curvature fluctuations of wavenumber k in single field infla-
tion reads

R00
k + 2

z0

z
R0

k + k2Rk = 0, (2.2)

where the “pump field” for the curvature perturbation defined as z ⌘ a�̇/H satisfies:

z0

z
= aH (1 + ✏� �) . (2.3)

In this expression, the standard slow-roll parameters ✏ and � are defined as

✏ ⌘ � Ḣ

H2
, (2.4)

� ⌘ � Ḧ

2HḢ
= � ✏̇

2 ✏H
+ ✏ . (2.5)

At a given moment of time during inflation, ✏ < 1, while � can be in principle of any size.
Notice that the mode equation in (2.2) is of the form of a damped harmonic oscillator. In
the standard slow-roll limit ✏, � ⌧ 1, we focus on modes Rk which already left the horizon
(i.e. k < |z0/z|).

The solution to equation (2.2) can then be expressed as

Rk(⌧) = C1 + C2
Z

d⌧

z2
(2.6)

where C1 and C2 are two integration constants, multiplying respectively the constant and
decaying solutions to the equation (2.2). Since equation (2.3) implies

z(a) = z0 exp

Z
(1 + ✏� �) d ln a

�
(2.7)

with z0 a constant, we learn that z ⇠ a in the limit where the slow-roll parameters ✏ and �
can be neglected. Since in such limit a ⇠ �1/(H⌧), the decaying mode proportional to C2

– 4 –
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ċs
Hcs

. (4.9)

At this point, we can generalise the arguments we introduced in Section 2, where we

have seen that the spectrum of curvature fluctuations can be enhanced at small scales

20The implications of a smaller than unity speed of sound for the cosmological observables (ns, r,↵s)
in a model independent large-N approach was studied in [86], while frameworks to study large deviations
from a slow-roll regime in similar contexts were developed in [87–89].

24

z =
a�̇

Hcs
,

z0

z
= aH (1 + ✏� � � s) ,

[Garriga-Mukhanov, ’99]

z(a) = z0exp

Z
(1 + ✏� � � s) d ln a

�

is given by
(C1 , C2 = const.)



ENHANCEMENT OF THE CURVATURE PERTURBATION 

In the slow-roll limit,                          

Solution for modes that already left the horizon 
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where H is the Hubble parameter, and �̇ denotes the time derivative of the inflaton. De-
viations from a slow-roll regime can change this expression, but at first sight it seems hard
to increase its value by several orders of magnitude within a well-defined range of scales,
without spoiling inflation. On the other hand, various recent works have succeeded in doing
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of the potential the inflaton dynamics experiences a rapid speed decrease, and enters into a
so-called ultra slow-roll regime during which the amplitude of �2
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can be neglected. Since in such limit a ⇠ �1/(H⌧), the decaying mode proportional to C2
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At a given moment of time during inflation, ✏ < 1, while � can be in principle of any size.
Notice that the mode equation in (2.2) is of the form of a damped harmonic oscillator. In
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decaying mode  ➭  growing mode! 



ENHANCEMENT OF THE SCALAR PERTURBATION 
SPECTRUM IN STRING INFLATION

๏ String axion inflation including subleading non-
perturbative corrections (single field)



ENHANCEMENT MECHANISMS IN STRING INFLATION 

๏ Axion monodromy with subleading non-perturbative 
corrections 

[Westphal, Silverstein, ’08; 
Kobayashi, Oikawa, Otsuka, ’15; 
Cabo-Bizet, Loaiza-Btito, IZ, ’16;

[Westphal-Silverstein-McAllister, ’08; 
Kobayashi-Takahashi, ’10; 

Kappl-Nilles-Winkler, ’15; 
Choi-Kim, ’15]

[Banks-Dine-Fox-Gorbatov, ’03]

• We start by presenting the theoretical motivations underlying this system. We show

how subleading, non-perturbative corrections to the axion potential can qualitatively

alter the homogeneous dynamics of the inflaton field, and work out the corresponding

time evolution of the slow-roll parameters (Sections 3.1-3.3).

• We continue in Sections 3.4-3.5 by numerically studying the dynamics of curvature

fluctuations in two concrete models based on this set-up, showing that they can be

in good agreement with CMB measurements (typically predicting a large value for

the running parameter ↵s), and at the same time produce an enhancement of the

curvature power spectrum at small scales, exploiting the argument of Section 2.

• In Section 3.6 we then show that our models produce a monochromatic population

of light PBHs that can provide a considerable fraction of Dark Matter density. We

discuss observational constraints on our PBH features, and further constraints that

the production mechanism imposes on the cosmological evolution after inflation ends.

3.1 Bumpy inflation

We consider a scenario that is based upon an earlier observation on how subleading, non-

perturbative e↵ects can alter axion inflation [17]. In string axion inflation, the perturbative

axion shift symmetry is broken spontaneously by background vevs (e.g. fluxes) or non-

perturbative e↵ects (e.g. string instantons), leading to large field inflation models with

monomial or cosine (“natural inflation”) potentials. In [17], we noted that subleading

non-perturbative corrections – if su�ciently large – can superimpose oscillations onto the

underlying potential. The size of these e↵ects will depend on the vev’s of fluxes and

other moduli, which are already stabilised. Therefore, they may be tiny, large enough to

introduce new local minima and maxima that may halt inflation, or anything in between.

We focus on an intermediate situation, where step-like features are induced in the potential,

with steep cli↵s and gentle plateaus, which transiently induce large deviations from the

slow-roll attractor regime.

For concreteness, we consider a string-inspired model with axion, �, with a canonical

kinetic term and minimal coupling to gravity:

Lp�g
=

M2
pl

2
R� 1

2
@µ�@

µ�� V (�), (3.1)

where the axion potential takes the following form

V (�) = V0 +
1

2
m2�2 + ⇤4

1

�

f
cos

✓
�

f

◆
+ ⇤4

2 sin

✓
�

f

◆
. (3.2)

This class of potentials is known to arise from string theory constructions [34–37]5.

5For example, the potential of the form above arises for an axion Im(Z) - after having fixed the saxion
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The background dynamics of the inflaton depends on the size of the non-perturbative

corrections compared to the mass term in the potential (3.2), in particular on the ratios

�i ⌘ ⇤4
i /m

2f 2. In the limit �i ! 0 (i = 1, 2), non-perturbative corrections become

negligible and we recover the usual smooth quadratic potential. For �i > 1, one introduces

a large number of new stationary points (where V 0 = 0) into the smooth �2 potential in a

given range of field values. In this case, the classically rolling scalar field might eventually

get stuck into some local minimum depending on the initial conditions [38]. In this work,

we focus on the parameter space where �i < 1 for both i = 1, 2, but without assuming

�i ⌧ 1.

To illustrate the general shape of the potential we are interested in, in Figure 1 we plot

V (�) in (3.2) and its slope for the parameters

�1 ' 0.86 , �2 ' 0.25 , Mpl/f = 1.6 , (Case 1) (3.3)

while V0 is chosen to ensure that the potential is vanishing at the minimum. The non-

perturbative corrections, being subleading but considerable, introduce plateau-like regions

connected by steep cli↵s. Notice that the slope of the potential, V 0, is positive for a large

range of � values but gradually decreases until it eventually vanishes at a shallow local

minimum when � ⇠ 1.35Mpl. One can expect the dynamics to be such that an initially

displaced � rolls down in its wiggly potential, passing through the local minimum, and

eventually settling on its global minimum at � = 0 [17]. In the upcoming sections, we will

elaborate on the interesting dynamics that arises due to the presence of a shallow local

minimum, shortly before the global minimum.

3.2 Background evolution – slow roll, fast roll

We now study the inflationary dynamics that arises from the Lagrangian (3.1) and (3.2) on

a flat FRW background. Using the number of e-folds, N(t) = ln a(t), as the time variable,

the system is governed by the following set of equations:

H2 =
V (�)

M2
pl(3� ✏)

,

d2�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V 0(�) = 0, (3.4)

where ✏ is the standard Hubble slow-roll parameter,

✏ = � Ḣ

H2
=

1

2M2
pl

✓
d�

dN

◆2

. (3.5)

Re(Z) - from a Kähler potential K = � ln(Z + Z̄), superpotential W = W0+MZ + i⇤e�bZ and an uplift
term, motivated e.g. by fluxes and non-perturbative e↵ects. The coe�cients in the potential will then
depend on the fluxes W0,M,⇤, as well as the vev of the saxion.
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term, motivated e.g. by fluxes and non-perturbative e↵ects. The coe�cients in the potential will then
depend on the fluxes W0,M,⇤, as well as the vev of the saxion.
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The background dynamics of the inflaton depends on the size of the non-perturbative

corrections compared to the mass term in the potential (3.2), in particular on the ratios

�i ⌘ ⇤4
i /m

2f 2. In the limit �i ! 0 (i = 1, 2), non-perturbative corrections become

negligible and we recover the usual smooth quadratic potential. For �i > 1, one introduces

a large number of new stationary points (where V 0 = 0) into the smooth �2 potential in a

given range of field values. In this case, the classically rolling scalar field might eventually

get stuck into some local minimum depending on the initial conditions [38]. In this work,

we focus on the parameter space where �i < 1 for both i = 1, 2, but without assuming

�i ⌧ 1.

To illustrate the general shape of the potential we are interested in, in Figure 1 we plot

V (�) in (3.2) and its slope for the parameters

�1 ' 0.86 , �2 ' 0.25 , Mpl/f = 1.6 , (Case 1) (3.3)

while V0 is chosen to ensure that the potential is vanishing at the minimum. The non-

perturbative corrections, being subleading but considerable, introduce plateau-like regions

connected by steep cli↵s. Notice that the slope of the potential, V 0, is positive for a large

range of � values but gradually decreases until it eventually vanishes at a shallow local

minimum when � ⇠ 1.35Mpl. One can expect the dynamics to be such that an initially

displaced � rolls down in its wiggly potential, passing through the local minimum, and

eventually settling on its global minimum at � = 0 [17]. In the upcoming sections, we will

elaborate on the interesting dynamics that arises due to the presence of a shallow local

minimum, shortly before the global minimum.

3.2 Background evolution – slow roll, fast roll

We now study the inflationary dynamics that arises from the Lagrangian (3.1) and (3.2) on

a flat FRW background. Using the number of e-folds, N(t) = ln a(t), as the time variable,

the system is governed by the following set of equations:

H2 =
V (�)

M2
pl(3� ✏)

,

d2�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V 0(�) = 0, (3.4)

where ✏ is the standard Hubble slow-roll parameter,

✏ = � Ḣ

H2
=

1

2M2
pl

✓
d�

dN

◆2

. (3.5)

Re(Z) - from a Kähler potential K = � ln(Z + Z̄), superpotential W = W0+MZ + i⇤e�bZ and an uplift
term, motivated e.g. by fluxes and non-perturbative e↵ects. The coe�cients in the potential will then
depend on the fluxes W0,M,⇤, as well as the vev of the saxion.
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Özsoy, Parameswaran, Tasinato, IZ, ’18]

‣ Interesting case arises for                      

Subleading but non-negligible corrections. Steep cliffs and 
gentle plateaus with interesting phenomenology.

The cliffs can momentarily violate the slow-roll conditions, 
and the plateaus can lead to phases of ultra-slow-roll 
inflation:  ✏ ⌧ 1 , � & 3 , (V 0 ⇠ 0)

Large enhancement of curvature perturbation!

• We start by presenting the theoretical motivations underlying this system. We show

how subleading, non-perturbative corrections to the axion potential can qualitatively

alter the homogeneous dynamics of the inflaton field, and work out the corresponding

time evolution of the slow-roll parameters (Sections 3.1-3.3).

• We continue in Sections 3.4-3.5 by numerically studying the dynamics of curvature

fluctuations in two concrete models based on this set-up, showing that they can be

in good agreement with CMB measurements (typically predicting a large value for

the running parameter ↵s), and at the same time produce an enhancement of the

curvature power spectrum at small scales, exploiting the argument of Section 2.

• In Section 3.6 we then show that our models produce a monochromatic population

of light PBHs that can provide a considerable fraction of Dark Matter density. We

discuss observational constraints on our PBH features, and further constraints that

the production mechanism imposes on the cosmological evolution after inflation ends.

3.1 Bumpy inflation

We consider a scenario that is based upon an earlier observation on how subleading, non-

perturbative e↵ects can alter axion inflation [17]. In string axion inflation, the perturbative

axion shift symmetry is broken spontaneously by background vevs (e.g. fluxes) or non-

perturbative e↵ects (e.g. string instantons), leading to large field inflation models with

monomial or cosine (“natural inflation”) potentials. In [17], we noted that subleading

non-perturbative corrections – if su�ciently large – can superimpose oscillations onto the

underlying potential. The size of these e↵ects will depend on the vev’s of fluxes and

other moduli, which are already stabilised. Therefore, they may be tiny, large enough to

introduce new local minima and maxima that may halt inflation, or anything in between.

We focus on an intermediate situation, where step-like features are induced in the potential,

with steep cli↵s and gentle plateaus, which transiently induce large deviations from the

slow-roll attractor regime.

For concreteness, we consider a string-inspired model with axion, �, with a canonical

kinetic term and minimal coupling to gravity:

Lp�g
=

M2
pl

2
R� 1

2
@µ�@

µ�� V (�), (3.1)

where the axion potential takes the following form

V (�) = V0 +
1

2
m2�2 + ⇤4

1

�

f
cos

✓
�

f

◆
+ ⇤4

2 sin

✓
�

f

◆
. (3.2)

This class of potentials is known to arise from string theory constructions [34–37]5.

5For example, the potential of the form above arises for an axion Im(Z) - after having fixed the saxion
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Figure 1. Potential V (�) (left, orange) in (3.2) and its derivative V 0(�) (right, orange) for
parameters �1 ⌘ ⇤4

1/m
2f2 = 0.86, �2 ⌘ ⇤4

2/m
2f2 = 0.25 and Mpl/f = 1.6, in comparison to the

case of smooth quadratic potential Vsm(�) / �2 (black, dashed). The gray dotted line on the
right plot is shown to guide the eye towards V 0(�) = 0.

Figure 2. Background solution �(N) (left) and H(N)/m (right) in the bumpy potential (3.2)
with the initial condition �(0) = 12.2 Mpl where �1, �2 and Mpl/f are taken to be the same as
in Figure 1.

We numerically solve the set of equations (3.4) and (3.5) assuming initially we are in the

slow-roll attractor regime, defined by the condition

d�

dN
= �V 0(�)

V (�)
. (3.6)

In this way, we set all the initial conditions required to solve the system only using a given

initial � value. As an example, we set �(Nin = 0) = 12.2Mpl, and plot the solutions to

(3.4) as a function of e-folds during inflation in Figure 2.

We find that the inflaton slowly rolls down the smooth plateau-like regions, sustaining

9

inflection point at small scales 

The background dynamics of the inflaton depends on the size of the non-perturbative

corrections compared to the mass term in the potential (3.2), in particular on the ratios

�i ⌘ ⇤4
i /m

2f 2. In the limit �i ! 0 (i = 1, 2), non-perturbative corrections become

negligible and we recover the usual smooth quadratic potential. For �i > 1, one introduces

a large number of new stationary points (where V 0 = 0) into the smooth �2 potential in a

given range of field values. In this case, the classically rolling scalar field might eventually

get stuck into some local minimum depending on the initial conditions [38]. In this work,

we focus on the parameter space where �i < 1 for both i = 1, 2, but without assuming

�i ⌧ 1.

To illustrate the general shape of the potential we are interested in, in Figure 1 we plot

V (�) in (3.2) and its slope for the parameters

�1 ' 0.86 , �2 ' 0.25 , Mpl/f = 1.6 , (Case 1) (3.3)

while V0 is chosen to ensure that the potential is vanishing at the minimum. The non-

perturbative corrections, being subleading but considerable, introduce plateau-like regions

connected by steep cli↵s. Notice that the slope of the potential, V 0, is positive for a large

range of � values but gradually decreases until it eventually vanishes at a shallow local

minimum when � ⇠ 1.35Mpl. One can expect the dynamics to be such that an initially

displaced � rolls down in its wiggly potential, passing through the local minimum, and

eventually settling on its global minimum at � = 0 [17]. In the upcoming sections, we will

elaborate on the interesting dynamics that arises due to the presence of a shallow local

minimum, shortly before the global minimum.

3.2 Background evolution – slow roll, fast roll

We now study the inflationary dynamics that arises from the Lagrangian (3.1) and (3.2) on

a flat FRW background. Using the number of e-folds, N(t) = ln a(t), as the time variable,

the system is governed by the following set of equations:

H2 =
V (�)

M2
pl(3� ✏)

,

d2�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V 0(�) = 0, (3.4)

where ✏ is the standard Hubble slow-roll parameter,

✏ = � Ḣ

H2
=

1

2M2
pl

✓
d�

dN

◆2

. (3.5)

Re(Z) - from a Kähler potential K = � ln(Z + Z̄), superpotential W = W0+MZ + i⇤e�bZ and an uplift
term, motivated e.g. by fluxes and non-perturbative e↵ects. The coe�cients in the potential will then
depend on the fluxes W0,M,⇤, as well as the vev of the saxion.
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Figure 2. Background solution �(N) (left) and H(N)/m (right) in the bumpy potential (3.2)
with the initial condition �(0) = 12.2 Mpl where �1, �2 and Mpl/f are taken to be the same as
in Figure 1.

We numerically solve the set of equations (3.4) and (3.5) assuming initially we are in the

slow-roll attractor regime, defined by the condition

d�

dN
= �V 0(�)

V (�)
. (3.6)

In this way, we set all the initial conditions required to solve the system only using a given

initial � value. As an example, we set �(Nin = 0) = 12.2Mpl, and plot the solutions to

(3.4) as a function of e-folds during inflation in Figure 2.

We find that the inflaton slowly rolls down the smooth plateau-like regions, sustaining
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Figure 10. Power spectrum of scalar curvature perturbation in bumpy axion inflation with the
parameter choices shown in Table 1 (Case 1-top panel, Case 2-bottom panel). Red dot in the
graph represent the point where �2

s = 2.2⇥ 10�9 and k⇤ = 0.05 Mpc�1.

formation) of a mode with wavenumber k:

M(k) = �
4⇡

3
⇢H�3

����
k=afHf

= � MH
eq

✓
⇢f
⇢eq

◆1/2 H2
eq

H2
f

(3.14)

where MH
eq is the horizon mass at the time of matter-radiation equality and the subscripts

“f” and “eq” denote quantities evaluated at the time of PBH formation and matter-

radiation equality, respectively. Using the conservation of entropy, gs(T ) T 3 a3 = const.

and the scaling of the energy density with the temperature in the radiation dominated

18

CMB scale

Large enhancement at 
large scales 

PBH scale

PBHS IN AXION MONODROMY

PBHs formed due to gravitational collapse of large 
fluctuations upon horizon re-entry during radiation epoch

Figure 11. � as a function of the smoothing scale k. The values of k where �(k) has a peak is
also shown with dashed vertical lines.

Cases �c Mpeak/M� ⌦tot
PBH/⌦DM

Mpl/f = 1.6 0.34 8⇥ 10�16 0.113
Mpl/f = 1.7 0.5 2⇥ 10�16 0.514

Table 3. The two di↵erent choices of the critical threshold overdensity �c and the corresponding
total abundance of PBHs for the models considered in Table 1. The peak value of the mass of
the relevant PBHs which are obtained from the equation (3.14), is also shown.

3.6.1 Observational constraints on PBH abundance

We have seen that axion inflation with subleading non-perturbative corrections can give

rise to PBHs of mass M ' 3.9 ⇥ 1017 � 1018g, which can constitute an O(1) fraction15 of

Dark Matter today. It has been pointed out that such compact objects can induce features

in the photon spectrum of the gamma-ray bursts that occur at cosmological distances

[74]. The angular separation of these photon sources which would be lensed by such small

PBHs is around the femto scale, hence the class of constraints obtained by these sources

is called “femto-lensing”. Recent analysis on femto-lensing of gamma ray bursts shows

that PBHs in the mass range 5⇥ 1017 � 1020 g cannot constitute more than 10% of Dark

Matter [75]. In particular, for the realization of axion inflation with the first parameter

set given in Table 1, the PBH abundance cannot be much higher than the level shown in

Table 3. However, the constraints16 become weaker for the smaller mass PBHs found in

the case where inflation terminates for a short period of time, and thus do not exclude the

interesting possibility that these tiny PBHs provide a significant fraction of Dark Matter

(see e.g. Figure 1 of [9] or Figure 4 of [3]).

15Recall that ⌦tot
PBH/⌦DM is exponentially sensitive to the value of �c which can be adjusted within the

suggested range in the literature to increase PBH abundance.
16Note however that contraints on the PBH fraction tend to become stronger for non-monochromatic

mass functions in this range of PBH masses [76].
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The background dynamics of the inflaton depends on the size of the non-perturbative

corrections compared to the mass term in the potential (3.2), in particular on the ratios

�i ⌘ ⇤4
i /m

2f 2. In the limit �i ! 0 (i = 1, 2), non-perturbative corrections become

negligible and we recover the usual smooth quadratic potential. For �i > 1, one introduces

a large number of new stationary points (where V 0 = 0) into the smooth �2 potential in a

given range of field values. In this case, the classically rolling scalar field might eventually

get stuck into some local minimum depending on the initial conditions [38]. In this work,

we focus on the parameter space where �i < 1 for both i = 1, 2, but without assuming

�i ⌧ 1.

To illustrate the general shape of the potential we are interested in, in Figure 1 we plot

V (�) in (3.2) and its slope for the parameters

�1 ' 0.86 , �2 ' 0.25 , Mpl/f = 1.6 , (Case 1) (3.3)

while V0 is chosen to ensure that the potential is vanishing at the minimum. The non-

perturbative corrections, being subleading but considerable, introduce plateau-like regions

connected by steep cli↵s. Notice that the slope of the potential, V 0, is positive for a large

range of � values but gradually decreases until it eventually vanishes at a shallow local

minimum when � ⇠ 1.35Mpl. One can expect the dynamics to be such that an initially

displaced � rolls down in its wiggly potential, passing through the local minimum, and

eventually settling on its global minimum at � = 0 [17]. In the upcoming sections, we will

elaborate on the interesting dynamics that arises due to the presence of a shallow local

minimum, shortly before the global minimum.

3.2 Background evolution – slow roll, fast roll

We now study the inflationary dynamics that arises from the Lagrangian (3.1) and (3.2) on

a flat FRW background. Using the number of e-folds, N(t) = ln a(t), as the time variable,

the system is governed by the following set of equations:

H2 =
V (�)

M2
pl(3� ✏)

,

d2�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V 0(�) = 0, (3.4)

where ✏ is the standard Hubble slow-roll parameter,

✏ = � Ḣ

H2
=

1

2M2
pl

✓
d�

dN

◆2

. (3.5)

Re(Z) - from a Kähler potential K = � ln(Z + Z̄), superpotential W = W0+MZ + i⇤e�bZ and an uplift
term, motivated e.g. by fluxes and non-perturbative e↵ects. The coe�cients in the potential will then
depend on the fluxes W0,M,⇤, as well as the vev of the saxion.
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3. Gravitational Waves Induced by Scalar Perturbations

In this section, we shall present the formalism of the second-order GWs. In the
conformal Newtonian gauge, the metric perturbation is written as

ds2 = �a2(1 + 2�)d⌘2 + a2

(1� 2 )�ij +

1

2
hij

�
dxi dxj , (7)

where �,  are the scalar perturbations, and hij are the tensor perturbations. We
have neglected vector perturbations, first-order GWs, and neglect anisotropic stress
in the following, which leads to � =  .52

3.1. Equation of motion

The Fourier components of tensor perturbations are defined as usual by

hij(⌘,x) =

Z
d3k

(2⇡)3/2
eik·x

⇥
h+
k

(⌘)e+ij(k) + h⇥
k

(⌘)e⇥ij(k)
⇤
, (8)

where the two polarization tensors are

e
(+)
ij (k) =

1p
2

⇥
ei(k)ej(k)� ēi(k)ēj(k)

⇤
,

e
(⇥)
ij (k) =

1p
2

⇥
ei(k)ēj(k) + ēi(k)ej(k)

⇤
,

(9)

with the basis vectors ei(k) and ēi(k) orthogonal to each other and to k. In the
following, we shall omit the polarization index for simplicity.

In the Fourier space, the equation of motion of tensor modes can be derived
from the Einstein equation as

h00
k

(⌘) + 2Hh0
k

(⌘) + k2h
k

(⌘) = S
k

(⌘) , (10)

where S
k

(⌘) is the Fourier transformation of the source term Sij(⌘,x),

S
k

(⌘) = �4eij(k)

Z
d3x

(2⇡)3/2
e�ik·xSij(⌘,x) . (11)

To solve the equation of motion of h
k

, one can use the Green’s function method
and get

h
k

(⌘) =
1

a(⌘)

Z ⌘

d⌘̄G
k

(⌘, ⌘̄)a(⌘̄)S
k

(⌘̄) , (12)

where the Green’s function G
k

(⌘, ⌘̄) satisfies

G00
k

(⌘, ⌘̄) +

✓
k2 � a00(⌘)

a(⌘)

◆
G

k

(⌘, ⌘̄) = �(⌘ � ⌘̄) (13)

with the primes denoting derivatives with respect to ⌘.
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Fig. 4. (Color online) Energy spectrum of the induced gravitational waves ⌦GW,0 predicted by
the two parameter sets of string axion inflationary model (the blue solid curve and the orange
dashed curve are the cases 1 and 2, respectively). The curves in the upper part are the expected
sensitivity curves of the Square Kilometer Array (SKA), European Pulsar Timing Array (EPTA),
Astrodynamical Space Test of Relativity using Optical-GW detector (ASTROD-GW), Taiji, Laser
Interferometer Space Antenna (LISA), TianQin, Advanced Laser Interferometer Antenna (ALIA),
Big Bang Observer (BBO), Deci-hertz Interferometer GW Observatory (DECIGO), Einstein Tele-
scope (ET), Advanced LIGO (aLIGO), respectively. These sensitivity curves are taken from
Refs. 45, 57–61.

Although the contribution from scalar perturbations to GWs is a second-order
e↵ect, such a second-order contribution is generically negligible compared to first-
order GWs produced during inflation if the spectrum of scalar perturbations is
power-law at all scales,52,53 because the scalar spectral index is constrained at
large scales by the Planck data. However, since the power spectrum of scalar per-
turbations is enhanced at small scales, there will be a large contribution to the GW
from the second-order contribution.10–17

As we have pointed out in Ref. 17, in the vicinity of the peak, the primordial
power spectrum can be approximated by a toy model with power-law function
of k as PR(k) = Akn1 for k ⌧ kp and PR(k) = Akn2 for k � kp, where kp is
the mode of the peak and A is the height of the peak. For example, the power
spectrum on the left panel of Fig. 3 can be approximated by n1 ' 2.8, n2 ' �0.8,
kp ' 6⇥1013 Mpc�1 and A ' 0.027. In Figs. 5–7, we give several examples of power-
law PR(k) with di↵erent parameters and corresponding energy spectrum of ⌦GW,0.
We can see that for a given n1 = 2.8, n2 = �0.8 and A = 0.027, as kp increases from
1⇥1013 Mpc�1 to 3.6⇥1014 Mpc�1, the frequency of maximum of the GW strength
is also increasing. For a given n1 = 2.8, n2 = �0.8 and kp = 6⇥ 1013 Mpc�1, as A
decreases from 0.27 to 0.0027, the maximum value of the induced GWs decreases
too. When we fix kp = 6 ⇥ 1013 Mpc�1, A = 0.027, and set n1 = 2.5, 2.8, 3.2,
n2 = �0.5, �0.8, �1.2, respectively, we can see that the left side of curve is almost
the same, and the right-hand side increases as n2 increase.
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Gravitational waves induced from string axion model of inflation

Table 1. Two examples of parameters choice.

Case Mpl/f V
1/4
0 m ⇤1 ⇤2

1 1.6 9.98285⇥ 10�4 2.563395477⇥ 10�6 1.218164⇥ 10�3 8.9630812⇥ 10�4

2 1.7 8.64799⇥ 10�4 2.12915358⇥ 10�6 1.08856568⇥ 10�3 7.1318712⇥ 10�4

2.1. The model

Consider a string axion model with a canonical kinetic term and minimal coupling
to gravity:38

Lp�g
=

M2
pl

2
R� 1

2
@µ�@

µ�� V (�) , (1)

with the axion potential takes the form

V (�) = V0 +
1

2
m2�2 + ⇤4

1
�

f
cos

✓
�

f

◆
+ ⇤4

2 sin

✓
�

f

◆
. (2)

Such kinds of potentials are known to arise from string theory constructions,39–42

where V0 is chosen to ensure the potential vanish at the minimum, and the last
two terms of the potential are the nonperturbative corrections. If the parameters
�1,2 ⌘ ⇤4

1,2/m
2f2 ! 0, the nonperturbative corrections become negligible and V (�)

recovers the usual quadratic potential. In this work, we focus on the parameter space
where �1,2 < 1, but without assuming �1,2 ⌧ 1.

In some choices of parameter space, the potential V (�) can make the prediction
at large scales in good agreement with the current CMB measurements and at the
same time generate a large peak in the power spectrum at small scales to arrive
at PBHs. For instance, we take the following two examples in Table 1,38 and the
corresponding potentials are shown in Fig. 1.

We can see that because of the nonperturbative e↵ects the potential has some
steep cli↵s and gentle plateaus compared to the corresponding leading axion poten-
tial.37 The inflation starts at the black point, and then slowly rolls down the smooth
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Fig. 1. (Color online) Scalar potential V (�) for the two examples of Table 1 (solid line) together
with the corresponding smooth quadratic potential (dashed line). The black point in both graphs
represents the points where inflation starts and the red point represents the inflection point.

1950213-3

In
t. 

J. 
M

od
. P

hy
s. 

A
 2

01
9.

34
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 V

A
N

D
ER

BI
LT

 U
N

IV
ER

SI
TY

 o
n 

12
/2

8/
19

. R
e-

us
e 

an
d 

di
str

ib
ut

io
n 

is 
str

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.

�
Sk ⇠ R2

k

�
Large scalar perturbation can source GWs at second order

(k � kCMB)

⌦ind
GW ⇠ 10�6P2

R



BEYOND SINGLE FIELD 

Features via deviation from slow-roll require non-trivial 
fine-tuned inflection points/bumps in potential. 

Inflation is likely to be described by BSM theories, 
supergravity and string theory. Usually there are 
multiple degrees of freedom that could be relevant  
for  inflation

Effective single field behaviour at large scales (near 
CMB pivot) can satisfy Planck constraints.  

Features and deviations from slow-roll can be 
generated by inflection points/bumps induced by 
additional field(s) at smaller scales AND non-trivial 
field space dynamics.

(Anguelova’s talk)



New inflationary attractor arises:

MULTI FIELD SLOW-ROLL INFLATION

๏ Large slow turning (strongly non-geodesic) inflation 

T a

Na

inflationary 
trajectory

=   Turning rate 

'̇2 = gab�̇
a�̇b

๏ New slow-roll parameter: ⌫ ⌘ !̇

H!
[Aragam, Paban, Rosati, ’20]

๏ Inflatons’ masses can be large; steep potential ok

2.1 Slow-roll inflation

The slow-roll conditions require the slow-roll parameters ✏, ⌘, �', defined above, to be much

smaller than one to guarantee long lasting slow-roll inflation, that is, ✏, ⌘, �', ⇠' ⌧ 1. These

conditions imply

H2 ' V

3MP l
, (2.11)

3H'̇+ VT ' 0 , (2.12)

and thus that the tangent projection of the derivative of the potential is small, that is:

✏T ⌘ M2
P l

2

✓
VT

V

◆2

⌧ 1 . (2.13)

On the other hand, the normal projection VN does not need to be small, and it is related

to the turning rate by eq. (2.6). Additionally, from (2.8) we see that during slow-roll,

VTT

3H2
⇠ ⌦2

3H2
, (2.14)

while from (2.9) we observe that, barring cancellations, ⌘ ⌧ 1 (equivalently �' ⌧ 1),

implies that
VTN

3H2
⇠ ⌦

H
, and ⌫ ⌧ 1 . (2.15)

Hence, we see that ⌫ behaves as a new slow-roll parameter in multifield inflation: the

turning rate is guaranteed to be slowly varying during slow-roll [12, 13]. As discussed

in [13], the slow-roll conditions above do not require small eigenvalues of the Hessian.

That is, the ⌘V parameter:

⌘V ⌘ M2
Pl

����min eigenvalue

✓
rarbV

V

◆���� , (2.16)

does not need to be small in multifield inflation and indeed can be larger than one, as in

the examples discussed in [13, 14].

2.2 Sharp turns from transient slow-roll violations

The discussion above implies that if the slow-roll condition is obeyed exactly with ✏, ⌘, �' ⌧
1, then the field moves in the manifold with slow-turns, ⌫ ⌧ 1. This hints at the possibility

of obtaining large turning rates, and therefore strong deviations from a geodesic trajectory,

if one or more of the slow-roll conditions are violated, while still maintaining a long-lasting

inflationary paradigm that is consistent with current observations. Indeed, if the potential

has intrinsic features which give rise to transient violations of the slow-roll condition with

⌘ & 1, it will generate transient violations of slow-turn (leading to sharp turns), or strong

geodesic deviations, with ! & 1 and ⌫ & 1. This interesting e↵ect arises naturally in

multifield axion inflation in field theory and supergravity and we study this mechanism in

what follows.
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� 1
[Chakraborty et al. ’19; 

Aragam, Chivoloni, Paban, Rosati, IZ, ’21]

[Achúcarro, Bjorkmo, Brown, Hetz, Palma, Christodoulidis, Marsh, Roest, Renaux-Petel , Sfakianakis, Turzyński, 15-19]

! ⌘ ⌦

H

(Anguelova’s talk)
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MULTI FIELD SLOW-ROLL INFLATION

inflationary 
trajectory

Adiabatic and entropy perturbations are given by
[Langlois, Renaux-Petel, ‘08]

T a (R)Na (S)

M2
s

H2
=

VNN

H2
+M2

Pl ✏R� !2 ,
z0

z
= aH (1 + ✏� �)

R00
k + 2
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z
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k +
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z
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(zaH!)0

z
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S 00
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z0

z
S 0
k +

✓
k2 +

z00

z
� ↵00

↵
+ a2 M2
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DYNAMICS OF LINEAR PERTURBATIONS 

๏ The dynamics of the linear perturbations and 
cosmological predict ions depends on the 
hierarchies of the adiabatic and entropy modes’ 
masses relative to each other, the Hubble 
parameter, the turning rate 𝜔, the curvature of the 
scalar manifold ℝ

[Sasaki, Stewart, '96; Gordon, Wands, Bassett, Maartens, '00;  
Groot Nibbelink, van Tent,'01; Langlois, Renaux-Petel, '08]

[Achúcarro, Gong, Hardeman, Palma, Patil, '10;  
Achúcarro, Atal, Cespedes, Gong, Palma, Patil, '12;  

Cespedes, Atal, Palma, ’12 …; 
[Renaux-Petel, Turzynski, ’15; Garcia-Saenz, Renaux-Petel, ’18…]



TRANSIENT LARGE TURNS: PBH AND GW

‣ Transient strongly non-geodesic trajectories interesting for 
phenomenology: PBHs, GWs

[Anguelova, Antal, Chen, Barausse, Braglia, Domenech, Finelli, Fumagalli, Hazra, Palma, Renaux-Petel, Riquelme, 
Ronayne, Scheihing, Sypsas,  Slosar,  Smoot, Sriramkumar, Starobinsky, Witkowski, Zenteno,  ... '18-'22]
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TRANSIENT LARGE TURNS: PBH AND GW

‣ Transient strongly non-geodesic trajectories interesting for 
phenomenology: PBHs, GWs

[Anguelova, Antal, Chen, Barausse, Braglia, Domenech, Finelli, Fumagalli, Hazra, Palma, Renaux-Petel, Riquelme, 
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‣ Large tachyonic mass of entropic fluctuations results in 
their exponential growth, a transient instability which is 
transferred to the curvature perturbation
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LARGE & RAPID TURNS IN 
SUPERGRAVITY 
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‣ Large, slow turns in supergravity are hard to find

NON-GEODESIC ATTRACTORS IN SUPERGRGAVITY

[Aragam, Chivoloni, Paban, Rosati, IZ, ’21](⌫ ⌧ 1)
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‣ Large, slow turns in supergravity are hard to find

NON-GEODESIC ATTRACTORS IN SUPERGRGAVITY

[Aragam, Chivoloni, Paban, Rosati, IZ, ’21]

‣ We found a single example in the literature: EGNO 
[Ellis, Garcia, Nanopoulos, Olive, ’14]

K = �3 log

⇥
�+

¯

�� c(�+

¯

�� 1)

4
⇤
+

S ¯S

(�+

¯

�)

3
,↵

W = SF (�) , F (�) =

r
3

4

M

a
(�� a) ,

(R(c,↵))

‣ Tune K, ☞ tuning         to increase     :(c,↵) !

�
↵ = 1, a = 1/2, M = 10�3, c = 103

�
! ⇠ 1.3

Figure 4: Trajectories for r and ✓ in the original EGNO model for the parameters and

initial conditions given in Figure 2.

Figure 5: Turning rate in the original EGNO model for two sets of parameters. On the

left, we use the parameters and initial conditions given in Figure 2 and find !(N
end

) ' 3,

where N
end

is the end of inflation, i.e. ✏ = 1. On the right, we use ↵ = 10�3, c = 105 to

increase the turn rate up to !(N
end

) ' 42.

parameter ✏
V

nor a tachyonic direction. We end by noting that the tachyonic mass rules

out fat inflation in these models, possibly illustrating a non-trivial manifestation of the

⌘-problem in supergravity.

4 Conclusions

Strongly non-geodesic inflationary trajectories in multifield inflation have attracted re-

vived interest recently from theoretical and phenomenological perspectives. However to

date, rapid-turn multifield models in supergravity and string theory are scarce. On the

supergravity side, the only model we are aware of with an order one turning rate ! & 1 is

the EGNO model [43] that we discussed in Section 3.4.2. On the string theory side, the

only available model is the multifield fat inflation D5-brane model introduced in [7].

In the present work we have systematically analyzed rapid-turn and fat inflation in

supergravity as a first step toward understanding multifield inflationary attractors in string

– 15 –
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NON-GEODESIC ATTRACTORS IN SUPERGRGAVITY

‣ No-scale inspired model 

Assuming that the Kähler potential is shift symmetric in �, such that it is a function of

(�+ �̄) only, we have the simplifications K� = K�̄, K
SS̄

,� = KSS̄

,�̄
, etc. The expressions

for ✏
T

and ! in (3.4) and (3.6) reduce to:

✏
T

= � M2
P l

4K��̄

✓
F�F̄ � FF̄�̄

FF̄

◆2

, (3.11)

⌦

H
' �M2

Pl

i
�
F�F̄ � FF̄�̄

�

FF̄

�
2K��̄,�

�

(2K��̄)
2
,' �MPl

p
2 ✏

T

�
2K��̄,�

�

(2K��̄)
3/2

. (3.12)

From here we again observe that slow-roll is attainable by suitably tuning the superpo-

tential, while large turning rates can be obtained by tuning the Kähler potential. One

can also write the eigenvalues (3.7) in terms of derivatives of K and W , making use of

the slow-roll conditions. However, it is not simple to understand analytically why there is

always a tachyonic direction. The condition for fat inflation, V
NN

> 9H2 ⇠ 3V , expressed

in terms of W and K is also analytically inscrutable; thus, determining why fat inflation

never occurs during slow-roll is highly nontrivial.

3.4 Generating large turning rates in supergravity

We now discuss two models where we demonstrate how to use our discussion above to

generate large turning rates. As we will see, although both models are stable, they always

have a tachyonic Hessian element along the inflationary trajectory.

3.4.1 No-scale inspired model

Let us consider (3.8) with the following Kähler potential:

K = � 3↵M2
Pl log[(�+ �̄)/MPl] + SS̄ , (3.13)

which corresponds to no-scale supergravity for ↵ = 1 [42]. For a general ↵ > 0, the field

space curvature is given by R = �4/(3↵). The potential (3.10) is

V =
M3↵

Pl |F |2
(�+ �̄)3↵

, (3.14)

while the turning rate (3.12) is
⌦

H
' 2

p
✏
Tp

3↵
. (3.15)

As anticipated, choosing an appropriate Kähler potential allows us to generate large turning

rates. This requires a su�ciently small ↵ ⌧ 1, which consequently yields a large negative

curvature. Although we present an example in the next subsection without a large negative

curvature, the turning rate still increases as ↵ ! 0. We have checked that this is the case

for a wide variety of superpotentials F (�). For clarity we now concentrate on the simple

choice 4:

F (�) = p0 + p1� . (3.16)

4The exact form of F (�) is unimportant for supporting inflation, as can be seen in several of the families

of models in Table 1.
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✓
R = � 4

3↵

◆

In terms of real fields � = r + i✓, the scalar potential and field space metric are given by

V = M3↵
Pl

⇥
p21✓

2 + (p0 + p1r)2
⇤

8↵r3↵
, g

ab

=
3↵M2

Pl

2r2
�
ab

. (3.17)

Before examining inflationary solutions, we first consider whether inflation is fat in this

example. As seen in the previous section, for the attractor with r0 ⇠ 0, V
NN

can be written

as in eq. (2.40). In the small-↵ limit this simplifies to

V
NN

H2
� 9 ' r!

✓

✓
3
p
2� 9

✏

◆
� 9 +O(↵). (3.18)

The sign of the expression above (3.18) determines the sign of the determinant, and the

number of positive eigenvalues. When ✏ is small as required for inflation, (3.18) is manifestly

negative. Additionally, whenever ✏ is small, ! is large, and ↵ is small, we find that V
NN

<

9H2. This fixes the Hessian’s eigenvalues to have opposite signs, implying the existence

of a tachyonic direction. This also shows that fat inflation is not possible in this model,

which we confirm numerically.

In Figure 1, we show the turning rate for di↵erent values of ↵. For all the values shown,

inflation lasts at least 60 e-folds; we plot the turning rate in the last 60 e-folds. For values of

↵ & 10�2, inflation lasts less than 60 e-folds for the same values of the parameters (p0, p1).

As discussed previously, it is possible to generate strongly non-geodesic trajectories by

tuning ↵, which changes the field space curvature, R = �4/3↵. On the other hand, one of

the masses is always tachyonic along the inflationary trajectory.

Figure 1: We plot the value of the dimensionless turning rate ⌦/H for di↵erent values of

↵. In all these cases, inflation lasts at least 60 e-folds and we plot the turning rate in the

last 60 e-folds. For ↵ & 10�2, inflation lasts less than 60-folds for the same values of the

parameters (p0, p1).

3.4.2 The EGNO model

We now discuss the only supergravity model we are aware of with a dimensionless turning

rate larger than one: the EGNO model of [43]. As with all supergravity models we have

– 12 –

‣ By tuning 𝛂, 𝞈 can be made large

[Aragam, Chivoloni, Paban, Rosati, IZ, ’21]

!

Figure 1: Here we show the dimensionless turning rate ⌦/H for di↵erent values of ↵ for

the no-scale inspired model (3.16). In all these cases, inflation lasts at least 60 e-folds and

we plot the turning rate in the last 60 e-folds. For ↵ & 10�2, inflation lasts less than

60-folds for the same values of the parameters (p0, p1).

Figure 2: We show here the minimal eigenvalue for di↵erent values of ↵ as in figure 1. It is

clear that they are always fat and tachyonic and increase (in absolute value) as the turning

rate increases. Thus these models satisfy the dSSC along the inflationary trajectory.

In Figure 1, we show the turning rate for di↵erent values of ↵. For all the values shown,

inflation lasts at least 60 e-folds; we plot the turning rate in the last 60 e-folds. For values of

↵ & 10�2, inflation lasts less than 60 e-folds for the same values of the parameters (p0, p1).
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‣ A mechanism to generate transient large turns in 
supergravity without large (negative) curvature:

 [Bhattacharya, IZ, ’22]

Natural set up:

axion monodromy inflation with subleading 
non-perturbative corrections 

 large turns arise due to  transient violations of slow-roll

(⌫ & 1)



SHARP TURNS WITH SMALL ℝ

[Parameswaran, Tasinato, IZ, ’16;  
Cabo-Bizet, Loaiza-Brito, IZ, ’16; 
Özsoy, Parameswaran, Tasinato, IZ, ‘18]

W = S(M�+ ie�b�)

K = � log[�+

¯

�� S ¯S] , (R = �4)

 [Bhattacharya, IZ, ’22]

The axion monodromy model that we consider below is particularly interesting since it

leads to growth of perturbations by exploiting the relation between two parameters, ⌘ and

!, via Eqs. (2.8) and (2.9). The transient large values of ⌘, and therefore of ��, repeatedly

induce kicks in the the turning rate, which becomes sharp and large4.

3 Multifield axion monodromy in supergravity

We now construct a supergravity axion monodromy model, which is the two field realisation

of the single field model introduced in [41].

The scalar potential in supergravity is constructed from the Kähler potential, K(�, �̄),

which is a real function of the superfields �, �̄, whose scalar component is the complex field;

and the holomorphic superpotential, W (�), as

V = eK/M2
Pl
�
Ki|̄DiWDjW � 3|W |2M�2

Pl

�
, (3.1)

where DiW = Wi+(Ki/MPl)W , with Wi ⌘ @W
@�i

and Ki|̄ is the Kähler metric, which when

passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.

We use the approach in [47–49] and introduce two “orthogonal” chiral superfields [50],

the goldstino, S, and inflaton superfield, �, where we denote the scalar components of these

superfields with the same letter. We then eliminate the sgoldstino, S by either introducing

suitable Kähler potential corrections to stabilise it [48], or simply by introducing a nilpotent

condition in it, S2 = 0 [49].

The Kähler and superpotentials for the axion monodromy model are given by

M�2
Pl K = �↵ log[(�+ �̄)/MPl � �SS̄/M2

Pl] , (3.2)

W = S(M�+ i�e�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K��̄ = 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M2

�

✓
⇢2 + ✓2 +

2�

M
e�b⇢


✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e�b⇢

�◆
, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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Figure 2: The field evolution and the Hubble parameter as a function of the number

of e-folds N during inflation for the set of parameters in Table 1. The blue vertical line

corresponds to Npivot.
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Figure 3: The variation of the slow-roll parameters for ✏, ⌘ and the dimensionless turning

rate ! with N are shown. In the plots of ⌘ and !, the dashed lines signify the boundaries

1,�1. The blue vertical lines correspond to Npivot. All the curves here are for the example

inTable 1. Magenta horizontal lines in each plot denote the periodicity of oscillations.

For the parameters in Table 1, the value of c ⌘ M
�b = 2.5⇥ 10�4 ⌧ 1 and therefore the

potential has infinitely many stationary points at y = b⇢ = 0. At the non-vanishing value

of ⇢ = ⇢min ' 0.13, the potential for ✓ has several stationary points, while during inflation,

– 9 –

!
sugra (multifield) axion 

 monodromy

�/M = 80 , b = 50

(S2 = 0)

‣ A mechanism to generate transient large turns in 
supergravity without large (negative) curvatures arises 
through transient violations of slow-roll due to 
subleading corrections to axion  

(⌫ & 1)



SHARP TURNS WITH SMALL ℝ

Figure 2: The field evolution and the Hubble parameter as a function of the number

of e-folds N during inflation for the set of parameters in Table 1. The blue vertical line

corresponds to Npivot.

10 20 30 40 50 60 70

-6

-4

-2

0

N

lo
g
ϵ

10 20 30 40 50 60 70
-6

-4

-2

0

2

4

N

η

Figure 3: The variation of the slow-roll parameters for ✏, ⌘ and the dimensionless turning

rate ! with N are shown. In the plots of ⌘ and !, the dashed lines signify the boundaries

1,�1. The blue vertical lines correspond to Npivot. All the curves here are for the example

inTable 1. Magenta horizontal lines in each plot denote the periodicity of oscillations.

For the parameters in Table 1, the value of c ⌘ M
�b = 2.5⇥ 10�4 ⌧ 1 and therefore the

potential has infinitely many stationary points at y = b⇢ = 0. At the non-vanishing value

of ⇢ = ⇢min ' 0.13, the potential for ✓ has several stationary points, while during inflation,

– 9 –

✏ ⌧ 1 ⌘ & 1

‣ A mechanism to generate transient large turns in 
supergravity without large (negative) curvatures arises 
through transient violations of slow-roll due to 
subleading corrections to axion  

 [Bhattacharya, IZ, ’22]

�/M = 80 , b = 50



M �/M b ⇢ini ✓ini Ninf r V
1/4
inf

2.52⇥ 10�6 60 50 0.250 4.20 64.77 0.010 0.0029

2.73⇥ 10�6 70 50 0.250 4.20 62.32 0.016 0.0030

2.15⇥ 10�6 80 50 0.245 4.20 59.48 0.018 0.0027

6.41⇥ 10�7 90 50 0.250 4.20 57.49 0.020 0.0015

1.10⇥ 10�7 100 50 0.250 4.20 56.07 0.022 0.0006

1.25⇥ 10�8 110 50 0.250 4.20 55.06 0.024 0.0002

1.60⇥ 10�6 80 40 0.250 4.50 63.63 0.011 0.0026

1.60⇥ 10�6 80 35 0.400 5.50 56.99 0.012 0.0026

Table 2: Selection of parameter values in Planck units (except �, which is dimensionless).

We consider � = 1 for all of these sets and fix the CMB normalisation by tuning M only.

The number of e-folds from the horizon exit of the pivot scale to the end of inflation is also

indicated as Ninf = Nend �Npivot.
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Figure 6: Adiabatic power spectra for the selection of parameters given in Table 2 com-

puted using the code PyTransport. The left panel shows the variation of PR(k) for di↵erent

values of �/M , with fixed b = 50. The right panel shows PR(k) for a fixed �/M = 80 with

varying b.

The e↵ect of decreasing “periodicity” in number of e-folds is clearly inherited in PR(k),

however, the rate of decrease may not follow the same pattern as the background pa-

rameters due to the combined contribution of the background e↵ects towards the scalar

perturbations.

It is interesting to note that for the range in �/M considered here, the peak position

kp is maximum for �/M = 80. For �/M � 80, the dependence of kp on �/M seems to

be mild (left panel of Fig. 6), whereas a stronger dependence of kp on the variation of b

can be seen in the right panel of Fig. 6. The mechanism of adiabatic and isocurvature

fluctuations sourcing each other is such that the isocurvature power spectra can be large

once the growth in curvature perturbations start to set in. However, the isocurvature

constraint at CMB scales is checked to be satisfied for each case.

It can be seen from the left panel of Fig. 6 that PR(k) has blue-tilt immediately after
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POWER SPECTRA

 [Computed using PyTransport: Mulryne, Ronayne, ’16]

‣ Large enhancement  (         ) of adiabatic spectrum 
at small scales due to combined oscillatory effects  

‣ Characteristic modulated enhanced spectrum 

whereas the violations are more frequent in N and large near N = 60. This can also be

seen in the bottom panel in Fig. 3 that ! grows more rapidly at N = 60 than at N = 30.

The e↵ect of a single sharp turn in the field space for multifield models on the evolution

of perturbations have been explored in great detail in the literature [27, 28, 44, 57–65]. A

sharp turn enhances the source terms of the scalar perturbations, and therefore can enhance

the power spectrum for modes that are subhorizon during the feature. As a result, inflation

models with a sharp turn in field space lead to enhanced adiabatic perturbations, which

can be e�cient in generating abundant primordial black holes and large amplitude of

primordial gravitational waves [23, 24, 32, 33, 66]. Recently [46] have explored the e↵ect

of controlled number of sharp turns in the field space by modelling the turning rates

and obtained enhancement in the curvature power spectra with characteristic oscillatory

features that depend on the properties of the feature in turning rates. However, for the case

under consideration, the situation is far more complicated due to the presence of multiple

features in the background and field space. First of all, the oscillations in the potential

make the background parameters deviate from their standard slow-roll evolution (|⌘| > 1).

Secondly, the inflationary trajectory has multiple turns (⌦/H in Fig. 3) in the field space.

Such large number of turns and intricate features in the field space and its consequences

are unavoidable for a viable choice of parameters that can sustain inflation long enough so

that the CMB pivot scale k = 0.05 Mpc�1 exits the horizon ⇠ 55 � 65 e-folds before the

end of inflation.

An immediate outcome of the above-described features is that the adiabatic power spec-

trum PR(k) for this class of models has a non-trivially enhanced profile. With a judiciously

chosen set of parameters, such background oscillations and sharp turns can cumulatively

lead to ⇠ O(107) enhancement of in the oscillatory envelope of PR(k) (see Fig. 6). The

amplitude of PR(k) depends on M2/�, whereas, the peak position and amplitude of the

features, as well as details of oscillations in PR(k) depend on the parameters �/M and

b. In all of the examples considered in this paper, we keep � = 1 and fix M with the

requirement of CMB normalisation at the pivot scale. We note again that the complexity

of the cumulative e↵ect of background and field space features makes it di�cult to probe

the dependence of the growth of PR(k) on the model parameters. The approach taken

here starting from a concrete model of supergravity AM, leads to a featurefull PR(k) with

a peak at scales smaller than those probed at CMB. We note categorically the following:

• The enhancement in PR(k) can be mainly due to multiple sharp turns, however, this

is induced by the transient decreases in ✏ (inflection points) as large as ✏max/✏min '
O(10�3) (see fig. 3). This is somewhat a combination of the two types of features in

the decomposition of ⌘ presented in [46], where the e↵ect of violations of slow-roll in

�� (�⌘k in their notation) and ! (⌘? in their notation) are shown individually.

• The small oscillations on top of the enhanced profile are mainly due to the oscillations

in the background parameters. However, there can be e↵ects of interference of the

characteristic growths due to each of the turns in field space.

Nevertheless, we have explored a region of the parameter space where (i) inflation is carried
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The axion monodromy model that we consider below is particularly interesting since it

leads to growth of perturbations by exploiting the relation between two parameters, ⌘ and

!, via Eqs. (2.8) and (2.9). The transient large values of ⌘, and therefore of ��, repeatedly

induce kicks in the the turning rate, which becomes sharp and large4.

3 Multifield axion monodromy in supergravity

We now construct a supergravity axion monodromy model, which is the two field realisation

of the single field model introduced in [41].

The scalar potential in supergravity is constructed from the Kähler potential, K(�, �̄),

which is a real function of the superfields �, �̄, whose scalar component is the complex field;

and the holomorphic superpotential, W (�), as

V = eK/M2
Pl
�
Ki|̄DiWDjW � 3|W |2M�2

Pl

�
, (3.1)

where DiW = Wi+(Ki/MPl)W , with Wi ⌘ @W
@�i

and Ki|̄ is the Kähler metric, which when

passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.

We use the approach in [47–49] and introduce two “orthogonal” chiral superfields [50],

the goldstino, S, and inflaton superfield, �, where we denote the scalar components of these

superfields with the same letter. We then eliminate the sgoldstino, S by either introducing

suitable Kähler potential corrections to stabilise it [48], or simply by introducing a nilpotent

condition in it, S2 = 0 [49].

The Kähler and superpotentials for the axion monodromy model are given by

M�2
Pl K = �↵ log[(�+ �̄)/MPl � �SS̄/M2

Pl] , (3.2)

W = S(M�+ i�e�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K��̄ = 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M2

�

✓
⇢2 + ✓2 +

2�

M
e�b⇢


✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e�b⇢

�◆
, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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 [Bhattacharya, IZ, ’22]

‣ Subleading NP corrections 
c h a n g e b a c k g r o u n d 
evolution and cosmological 
predictions 

out for 55� 65 of e-folds; (ii) the scalar spectral index ns and the tensor-to-scalar ratio r

at CMB pivot scale belong to the observationally allowed range; (iii) PR(k) is enhanced at

small scales with oscillatory features which, for suitable choice of parameters, can lead to

interesting outcomes for PBH and GWs. We elaborate these points in detail in the next

sections with various values of the control parameters �/M and b.

4.1 Adiabatic power spectrum in multifield axion monodromy

The amplitude of PR(k) is controlled by an overall parameter M2/�, whereas the param-

eters �/M and b determine the oscillatory profile. Interestingly, due to the presence of

multiple oscillations in the potential itself for viable parameter combinations, the initial

field values also influence slightly the dynamics of inflation. This is due to the fact that

for some initial values of ⇢ and ✓, one or both of the fields encounter local minima, which

makes it di�cult to execute slow-roll along that direction. In Table 2 we show a suitable

set of the parameters and initial conditions used to compute PR(k) for the supergravity

axion monodromy model described above. The perturbation equations (4.1) and (4.2) are

solved with the transport code PyTransport6 [67] to evaluate PR(k) for each case shown

in Fig. 6. For a given set of initial values ⇢i, ✓i and the parameters �/M and b, the pivot is

determined as the point at which the scalar spectral index ns matches the constraint given

by Planck 2018 [1]: ns = 0.9649 ± 0.0042 at 68% confidence limit. From the penultimate

column of Table 2, we see that the tensor-to-scalar ratio r is within the latest bound by

BKPlanck 2020 [2], which is r < 0.036 at 95% confidence limit. Notice that the values for

r do not correspond to either a �2-like inflation nor natural inflation as the e↵ective decay

constants for the examples in Table 2 are of order fe↵ . 10�1MPl. In other words, similar

to the modulated single field case discussed in [41], the non-perturbative subleading cor-

rections change the background evolution, as well as the cosmological predictions. Finally,

the parameter M2/� can be determined by matching with the pivot amplitude given by

Planck 2018.

The parameters �/M and b influence the oscillations in the background dynamics as

well as the turns in the field space. Therefore, the position of the peak, kp, and the

amplitude at the peak PR(kp) also depend on these parameters in a complex manner. The

enhancement in PR(k) at small scales can lead to interesting phenomenological implications

which we discuss in the next section. For all the examples in Table 2, c ⌧ 1, which leads

to a large number of stationary points in the potential for ⇢ = ⇢min.

6Details about the PyTransport code can be found here.
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‣ Non-trivial PBHs mass spectrum with multiple peaks. (PBHs 
produced during radiation domination epoch )   (MPBH) can be calculated from Eq. (5.2) using Eq.s (5.3), (5.4) and (5.5). The fraction

of DM as PBHs for a wide mass spectrum  (MPBH) can then be defined as

fPBH ⌘ ⌦PBH

⌦DM
=

Z
 (MPBH)dMPBH, (5.6)

which is also dubbed as the PBH abundance. It can be shown that, typically, to have a
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Figure 7: PBH mass spectra for di↵erent choices of �/M with b = 50 in all the cases.

considerable PBH abundance in RD, PR(k) is needed to be enhanced by seven orders of

magnitude in amplitude as compared to its CMB value. From the PR(k) curves plotted in

Fig. 6, evidently, this criteria is fulfilled for a reasonable parameter space of the inflation

model.

From the left panel of Fig. 6, it can be seen that for �/M ⇠ 80�90, the peak amplitude

of PR(k) reaches & 10�2. With this motivation, in Fig. 7 we present the PBH mass spectra

for �/M ⇠ 80, 90 and 88 with b = 50 for all the cases. The first two parameter sets are

detailed in Table 2, whereas for the last set, similarly, we take � = 1 and M is determined

to obey the CMB normalisation. The mass spectra in Fig. 7 exhibit multiple peaks, which

can be attributed to the oscillations in PR(k).

All of the mass spectra in Fig. 7 peak at very small masses in the range 10�24M� �
10�16M�, which has strong bounds from evaporation constraints from BBN [123], CMB

spectral distortions and anisotropies [78, 124], extragalactic ��rays [123], Galactic ��rays

[125] and Voyager-1 e± [126] (see Figs 4 and 11 in [97]). These multiple peaks in PBH mass

spectra are interesting, since they can lead to abundance of PBHs in specific narrow mass

ranges, while still keeping the total abundance fPBH small. We found fPBH = 1.8 ⇥ 10�2

for �/M = 80, b = 50; fPBH = 5.0 ⇥ 10�4 for �/M = 88, b = 50 and fPBH = 2.5 ⇥
10�3 for �/M = 90, b = 50. While BBN constraint still allows fPBH ⇠ 10�4, CMB and

��ray observations constrain fPBH very stringently below 10�10 for the range 10�20M� .
MPBH . 10�17M� for a monochromatic  (MPBH).

Since the oscillations in PR(k), and therefore the positions and heights of the peaks in

the mass spectra are controlled by �/M and b, a suitable combination of these parameters
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LIGHT PBHS IN ABUNDANCE

timing arrays (PTAs) such as NANOGrav [101, 102], EPTA [103–105] etc., are sensitive

in the range 10�9 � 10�7 Hz, corresponding to 6 ⇥ 105 Mpc�1 . k . 6 ⇥ 107 Mpc�1.

Ground based interferometric detectors such as LIGO/Virgo [106–109], KAGRA [110, 111]

and ET [112] cover the range 10 � 103 Hz, corresponding to 6 ⇥ 1015 Mpc�1 . k .
6 ⇥ 1018 Mpc�1. The intermediate frequency range can be probed by LISA [113–116],

DECIGO [117–119], AION/MAGIS [120], Taiji [121], TianQin [122].

The supergravity axion monodromy model studied in this work proves to be an inter-

esting candidate to produce abundant PBHs and large secondary GWs with a characteristic

profile as we see below. It can be seen in the PR(k) curves in Fig. 6 that PR(k) can reach

large amplitudes (up to 10�3 � 10�2 in some cases) at small scales for multiple parameter

sets considered in Table 2.

5.1 PBH formation

If the amplitude of the primordial fluctuations is such that when the modes re-enter the

horizon at the post-inflationary epoch, the density fluctuations � are larger than the critical

density for collapse (�c), then PBHs can be produced with mass MPBH = �MH , where MH

is the horizon mass at collapse. � signifies the e�ciency of collapse [16] and is typically of

order 1; here we consider � = 0.33. The mass of PBH depends on the horizon size at the

time of collapse. For standard post-inflationary history, PBHs with masses of interest are

formed in the radiation dominated (RD) epoch (�c = 0.41) when the time of collapse can

be considered the same as the time of horizon entry for the scalar mode due to logarithmic

growth of subhorizon perturbations. Using the Press-Schechter formalism for gravitational

collapse, PBH abundance at present in an interval of mass MPBH to MPBH + dMPBH

produced in RD epoch is
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The PBH mass fraction is defined as the fraction of the energy that collapses to a PBH at

the time of formation, which, for Gaussian adiabatic fluctuations, can be written as

�PBH(MPBH) = erfc
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where �2� is the variance of the density power spectrum and calculated as:
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k
(kR)4W 2(k,R)PR(k). (5.4)

The window function W 2(k,R) = exp(�k2R2) is chosen to smooth the perturbations on

the comoving scale R at formation. The mass MPBH of the PBH produced is related to

the comoving wavenumber k via
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(� = 0.33)
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MPBH = �MH ; MPBH ⇠ k�2
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‣ Multiple peaks can lead to 
abundance of PBHs in specific 
narrow mass ranges, while 
keeping the total abundance 
fPBH    small.  (MPBH) can be calculated from Eq. (5.2) using Eq.s (5.3), (5.4) and (5.5). The fraction

of DM as PBHs for a wide mass spectrum  (MPBH) can then be defined as

fPBH ⌘ ⌦PBH

⌦DM
=

Z
 (MPBH)dMPBH, (5.6)

which is also dubbed as the PBH abundance. It can be shown that, typically, to have a
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Figure 7: PBH mass spectra for di↵erent choices of �/M with b = 50 in all the cases.

considerable PBH abundance in RD, PR(k) is needed to be enhanced by seven orders of

magnitude in amplitude as compared to its CMB value. From the PR(k) curves plotted in

Fig. 6, evidently, this criteria is fulfilled for a reasonable parameter space of the inflation

model.

From the left panel of Fig. 6, it can be seen that for �/M ⇠ 80�90, the peak amplitude

of PR(k) reaches & 10�2. With this motivation, in Fig. 7 we present the PBH mass spectra

for �/M ⇠ 80, 90 and 88 with b = 50 for all the cases. The first two parameter sets are

detailed in Table 2, whereas for the last set, similarly, we take � = 1 and M is determined

to obey the CMB normalisation. The mass spectra in Fig. 7 exhibit multiple peaks, which

can be attributed to the oscillations in PR(k).

All of the mass spectra in Fig. 7 peak at very small masses in the range 10�24M� �
10�16M�, which has strong bounds from evaporation constraints from BBN [123], CMB

spectral distortions and anisotropies [78, 124], extragalactic ��rays [123], Galactic ��rays

[125] and Voyager-1 e± [126] (see Figs 4 and 11 in [97]). These multiple peaks in PBH mass

spectra are interesting, since they can lead to abundance of PBHs in specific narrow mass

ranges, while still keeping the total abundance fPBH small. We found fPBH = 1.8 ⇥ 10�2

for �/M = 80, b = 50; fPBH = 5.0 ⇥ 10�4 for �/M = 88, b = 50 and fPBH = 2.5 ⇥
10�3 for �/M = 90, b = 50. While BBN constraint still allows fPBH ⇠ 10�4, CMB and

��ray observations constrain fPBH very stringently below 10�10 for the range 10�20M� .
MPBH . 10�17M� for a monochromatic  (MPBH).

Since the oscillations in PR(k), and therefore the positions and heights of the peaks in

the mass spectra are controlled by �/M and b, a suitable combination of these parameters
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Figure 8: GW spectra for di↵erent choices of parameters given in Table 2, where the color

schemes are same as in Fig. 6. The left panel shows the variation of ⌦(2)
GWh2 for di↵erent

values of �/M , with fixed b = 50. The right panel shows ⌦(2)
GWh2 for a fixed �/M = 80

with varying b.

The GW spectrum at present time ⌧0 for this secondary GW background is then

⌦(2)
GW(k, ⌧0) = 1.62⇥ 10�5 ⌦rad,0

4.18⇥ 10�5

✓
g⇤(⌧)

106.75

◆✓
gs(⌧)

106.75

◆�4/3

⌦(2)
GW(k, ⌧), (5.13)

where

⌦(2)
GW(k, ⌧) =

(k⌧)2

24
Ph(k, ⌧). (5.14)

Due to the form of the kernel given in Eq. (5.12), the induced tensor power spectrum

Ph(k, ⌧) gathers a power (k⌧)�2, therefore, ⌦(2)
GW(k, ⌧0) is independent of ⌧ . Hence, the full

second order GW can be calculated using Eq. (5.13) once the primordial power spectrum

PR(k) is obtained for the model under consideration. Fig. 8 shows the induced secondary

GW spectra the parameter sets in Table 2 for the supergravity axion monodromy model

considered in this paper.

As expected from the wide enhancement profiles in PR(k), the GW spectra have wide

peak profiles with inherent oscillations. Interestingly, for some of the parameter combi-

nations in Table 2, ⌦(2)
GWh2 crosses the sensitivity bounds of more than one GW survey

at various frequencies. For example, the green, orange and red curves in the left panel

of Fig. 8 with �/M � 90 are within the sensitivities of SKA, LISA and DECIGO. The

blue curve with �/M = 80 is within the sensitivity of LISA and DECIGO. The possibility

of simultaneous detection at di↵erent observations is encouraging, since cross-correlation

of between these surveys can put stringent constraints on the model parameters in such

cases, even for non-detection of such GW profiles. Moreover, the non-trivial spectral shape

and amplitude of a the GW of this class of models, may be detectable by LISA [130].

Finally, let us note that despite the wide profile of the GW spectra, the BBN boundR df
f ⌦GWh2 < 5.6⇥ 10�6�Ne↵ is satisfied for all of the examples considered here.
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⌦(2)
GW ⇠ k2⌧2Ph(k, ⌧)

Ph(k, ⌧) / P2
�'

‣ Broad and large GW 
spectrum.

‣ Can be probed by multiple 
future surveys together  

‣ Characteristic modulated 
shape

M �/M b ⇢ini ✓ini Ninf r V
1/4
inf

2.52⇥ 10�6 60 50 0.250 4.20 64.77 0.010 0.0029

2.73⇥ 10�6 70 50 0.250 4.20 62.32 0.016 0.0030

2.15⇥ 10�6 80 50 0.245 4.20 59.48 0.018 0.0027

6.41⇥ 10�7 90 50 0.250 4.20 57.49 0.020 0.0015

1.10⇥ 10�7 100 50 0.250 4.20 56.07 0.022 0.0006

1.25⇥ 10�8 110 50 0.250 4.20 55.06 0.024 0.0002

1.60⇥ 10�6 80 40 0.250 4.50 63.63 0.011 0.0026

1.60⇥ 10�6 80 35 0.400 5.50 56.99 0.012 0.0026

Table 2: Selection of parameter values in Planck units (except �, which is dimensionless).

We consider � = 1 for all of these sets and fix the CMB normalisation by tuning M only.

The number of e-folds from the horizon exit of the pivot scale to the end of inflation is also

indicated as Ninf = Nend �Npivot.
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Figure 6: Adiabatic power spectra for the selection of parameters given in Table 2 com-

puted using the code PyTransport. The left panel shows the variation of PR(k) for di↵erent

values of �/M , with fixed b = 50. The right panel shows PR(k) for a fixed �/M = 80 with

varying b.

The e↵ect of decreasing “periodicity” in number of e-folds is clearly inherited in PR(k),

however, the rate of decrease may not follow the same pattern as the background pa-

rameters due to the combined contribution of the background e↵ects towards the scalar

perturbations.

It is interesting to note that for the range in �/M considered here, the peak position

kp is maximum for �/M = 80. For �/M � 80, the dependence of kp on �/M seems to

be mild (left panel of Fig. 6), whereas a stronger dependence of kp on the variation of b

can be seen in the right panel of Fig. 6. The mechanism of adiabatic and isocurvature

fluctuations sourcing each other is such that the isocurvature power spectra can be large

once the growth in curvature perturbations start to set in. However, the isocurvature

constraint at CMB scales is checked to be satisfied for each case.

It can be seen from the left panel of Fig. 6 that PR(k) has blue-tilt immediately after
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SUMMARY

Gravitational wave cosmology provides a unique 
opportunity to test fundamental theories of QG 
Primordial black holes and induced gravitational 
waves offer a direct window to the very early universe  
Curvature amplification mechanisms arise naturally in 
string inflation: axion monodromy, DBI  
Multifield inflation relaxes fine tunings encountered in 
single field amplification mechanisms   
Transient large turns induced from transient slow-roll 
violations offers a novel mechanism to generate 
strong non-geodesic trajectories in supergravity with 
R~1. Rich testable predictions: PBHs, IGWs


